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It is proposed that a spilling breaker can be regarded as a turbulent gravity 
current riding down the forward slope of a wave, and can be treated using methods 
which have been successful in other contexts. The whitecap retains its identity 
because it is lighter than the water below, owing to the trapping of air bubbles, 
and information from laboratory experiments is used to estimate the density 
of the air-water mixture in different circumstances. Entrainment of water from 
below, at a rate E(Ri,) which is a function of the overall Richardson number Ri,, 
has two opposing effects. It provides increasing mass and buoyancy fluxes which 
can produce an accelerating flow and it also gives rise to a drag, because the en- 
trained fluid has upslope momentum (inco-ordinates moving with the wave crest). 

A similarity solution is obtained under the assumptions that the flow is 
steady in time, and that the slope and the density difference remain constant. 
In  this solution, the thickness of the whitecap is proportional to the distance s 
measured from the crest of the wave. The tangential velocity is proportional 
to s). Since the velocity in a Stokes 120' angle is also proportional to s t ,  this 
implies that such a flow can start from a small disturbance with zero flux, and 
propagate with constant acceleration. An important consequence of the analysis 
is that solutions of this kind are possible only when the slope and the density 
difference between the whitecap and the water below are sufficiently large; 
otherwise the upward drag dominates, and a self-sustaining flow cannot form. 
For a slope of 30") near the crest of the breaking wave, the theory predicts that 
a density difference greater than 8% is required to sustain a steady motion, 
at  which point the downslope velocity is 12% of the opposing velocity a t  the 
wave surface. A 'starting plume' model of the advancing front of the breaker 
is also discussed, which suggests that this too will be accelerating uniformly, 
but will have a velocity somewhat less than that in the flow behind. 

A comparison with the laboratory observations of Kjeldsen & Olsen verifies 
several features of the model, including the order of magnitude of the relative 
velocities in the whitecaps and the wave beneath. It also reveals the intermittent 
nature of the flow, which is here explained as due to the intermittent rounding 
of the wave crest due to damping of the wave by the whitecap on the forward face. 

1. Introduction 
The physical importance of the phenomenon of wave breaking, both in shallow 

andin deep water, has been discussed in arecent review (Longuet-Higgins 1973b). 
I F L M  63 



2 M .  S .  Longuet-Higgine and J .  X. Turner 

For example, it  was pointed out that breaking waves are responsible for the 
conversion of wave momentum to surface currents, for the large-scale mixing 
of the surface layers of the ocean, and for enhancing the transfer of heat, salt 
and dissolved gases by the production of bubbles and spray. 

Very little is known, however, about the mechanism of breaking of surface 
waves, especially in deep water. The form of the limiting wave has been calculated, 
following the early work of Stokes (1 880), who showed that the steady progressive 
wave of maximum amplitude must have a sharp angle of 120’ at the crest. It 
may be possible to follow the evolution of a wave up to the point of breaking by 
numerical methods similar to those used by Chan & Street (1970) for a wave in 
shallow water. However, apart from a study by Longuet-Higgins ( 1 9 7 3 ~ )  (one 
feature of which will be discussed further below), no theoretical description has 
been given of the motion near the crest and in the resulting whitecap after the 
wave has broken. Mathematicians working in this field are accustomed t o  dealing 
with potential flows, and since the same methods cannot be applied to a turbulent 
breaker, this part of the problem tends to be neglected. I n  the present paper the 
turbulent character of the motion a t  this stage is taken as the starting-point, 
and ideas developed in another field are adapted to describe the progress of 
a whitecap down the front of a wave. Our theory is applied more particularly 
to breakers on a shelving beach, but there is nothing in the model which prevents 
it being applied also to deep-water waves. 

The formulation of our model has been strongly influenced by laboratory 
studies of breaking waves and some associated phenomena. In particular Mason 
(1952) clearly distinguished two types of breaking wave: ‘plunging breakers ’, in 
which the wave crest curls forward and plunges deeply into the slope of the wave 
some distance from the crest, and ‘spilling breakers’, in which the broken water 
seems to develop more gently from an instability at the sharp crest and forms 
a quasi-steady whitecap on the forward slope. Only this latter type, the spilling 
breaker, will be considered in the present paper. The contrast between these 
two types (and a third, the ‘surging breaker’ which can develop as a wave runs 
up on a steep beach) is shown very clearly in a recent cine film made by Kjeldsen & 
Olsen (1971; see also Galvin 1972). 

A characteristic property of a spilling breaker is that, as it breaks gently at 
the crest, it traps enough air bubbles for the resulting air-water mixture to be 
significantly lighter than the water below it. This density difference will inhibit 
mixing with the face of the wave, so that the whitecap rides on top of the sloping 
sea surface. The basic assumption of our theoretical model is that  the whitecap 
can be regarded as a distinct turbulent flow, which is driven down the slope by 
the component of gravity in that direction in just the same way as a turbulent 
gravity current on a solid sloping boundary. As the flow continues, the turbulence 
will lead to  the entrainment of water from the laminar wave surface below, and 
it will also result in the further incorporation of air, specially near the front of 
the whitecap, so that the density difference can be maintained. 

The theory of Longuet-Higgins ( 1 9 7 3 ~ )  suggests a model for the local flow 
near the forward edge of a spilling breaker, where the turbulent whitecap meets 
the undisturbed water surface. Here, on the contrary, we emphasize (in § 2 )  the 
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FIGURE 1. Sketch showing the features of a spilling breaker which are incorporated in the 
theoretical model. The wave is moving from right to left and has a whitecap on its forward 
face. The velocities in both the wave and whitecap are measured relative to  the wave 
crest, with positive direction downwards. 

properties of the flow some distance behind the front, using the balance of forces 
at a fixed cross-section in the manner proposed for turbulent gravity currents 
by Ellison & Turner (1959). Later (in $6) it will be shown how the advance of 
the front can be described in a way which is consistent with this steady plume 
model. Common to both Longuet-Higgins’s and Ellison & Turner’s theories, 
however, is the assumption that there is a tangential stress at the boundary 
between the turbulent and laminar flows, due to the entrainment across this 
boundary 

The several elements to be incorporated in the theory of $ 2  are shown in 
figure 1.  In  co-ordinates moving with the phase velocity the flow a t  the surface 
of the waves is directed upwards towards the crest, with velocity decreasing to 
zero at  the corner. On top of this is the whitecap, with gravity tending to drive 
it down the slope. Entrainment into this turbulent flow will add both water 
from below and air from above (or at the front). Mixing into the whitecap will 
be driven by turbulence produced by shear across the interface, but it will be 
inhibited by the fact that the turbulent air-water mixture in the whitecap is 
lighter than the water below which it entrains. The rate at  which water is in- 
corporated will depend on the velocity difference u,, = ur - u between the white- 
cap and the wave, on the density difference p -p‘ (where pf is the mean density 
of the air-water mixture) and on the local length scale, say the depth 6. Following 
Ellison & Turner (1959) we suppose that the entrainment rate is a function of 
the overall Richardson number 

Ri, = g‘6cOs O/U& (1) 

where g’ = g ( p  -p’)/p and 0 is the slope. Rather less is known about the entrain- 
ment of air, but in $ 3  we discuss laboratory measurements of air concentrations 
in hydraulic jumps (see, for example, Rajaratnam 1962) and in self-aerated flows 
on steep slopes (e.g. Straub & Anderson 1958) which allow us to put some limits 
on pf . 

A similarity solution describing the development of the whitecap with dis- 
tance from the crest is obtained in $4. This must be an oversimplification of the 
actual unsteady flow, but it exhibits very clearly the most important physical 
features. The problem is unusual in that entrainment is both the driving and 
retarding mechanism: driving because it provides an increasing flux of water to 
accelerate the whitecap down the slope of the wave, and retarding because the 
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entrained water has momentum in the upslope direction. The balance between 
these opposing tendencies and gravity determines the behaviour of the spill, 
and it is shown in 5 5 that only for large enough slopes and density differences can 
a downslope flow be formed. This problem has some features in common with 
the ‘layer reversal’ calculation of Ellison & Turner (1969). They showed how 
to calculate the strength of an opposing flow necessary to cause an inclined plume 
to reverse its natural direction of motion (with gravity) and to be swept along by 
the ambient stream. 

In $ 7  we make some comparisons between the results of the theory and 
laboratory measurements on spilling breakers, which confirm some of the 
features of our model but also reveal the intermittent character of the flow. 
This is discussed further in 3 8, where a physical explanation is suggested. 

2. The motion of an inclined plume entraining a varying ambient flow 
The development of our model is adapted from that given by Ellison & 

Turner (1959), to which reference should be made for more details. Take the 
origin moving with the wave crest, the s axis along the wave slope, and the 
n axis perpendicular to this; the motion is assumed to be two-dimensional, 
i.e. independent of the distance along the crest. The mean velocity u’ (positive 
in the downslope direction), depth 6 and density p’ in the whitecap at any s are 
defined using integrals of the local properties u; and p; across the flow: 

There are certain differences between the present flow and the turbulent 
gravity currents considered previously which should be pointed out immediately. 
The density difference which drives the flow is now not the same as that which 
inhibits the entrainment. The full density difference between air and the air- 
water mixture in the breaker provides the driving buoyancy force, whereas it 
is the smaller density difference between the air-water mixture and the water 
below it which must be used when calculating entrainment. The entrainment 
assumption is summarized in the equation of continuity 

d(6u’)lds = Elu& ( 5 )  

which states that the downslope mass flux is increased by entrainment at  a rate 
proportional to the velocity difference between the whitecap and the wave 
slope below. The factor E is a function E(Ri,) of the overall Richardson number 
defined by (1)) whose form is known from laboratory experiments. Implied by 
the use of Ri, as the only non-dimensional parameter involving the density 
difference is the Boussinesq approximation, which is used in all that follows. 
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In  some cases where the proportion of air in the breaker is large, it  may not be 
justifiable to neglect the variation of density in the inertia terms; but in view of 
the strong simplifications made in other ways it hardly seems appropriate to 
make the model too elaborate. 

Another difference from the earlier theory becomes apparent in the derivation 
of the momentum equation. The velocity of the fluid being entrained into the 
breaker is not constant (as it was for the ‘reversal’ problem) but varies like 
u cc s: (see 8 4), and this introduces an extra term into the equation. It will also 
appear from the similarity solution that the plume velocity has this same de- 
pendence on s, so that the mass (or buoyancy) flux is increasing with distance. It 
is therefore not appropriate to seek solutions in which the buoyancy flux remains 
constant (as it does for a simple gravity current entraining ambient fluid which 
is a t  rest or in uniform motion). Instead, we shall suppose that the mean density 
p’ of the air-water mixture remains substantially constant at all s, an assumption 
which will be shown in § 3 to have some experimental support. 

The momentum equation, with an arbitrary exterior flow, can be written in 
the form 

where the Boussinesq approximation is used, and g rather than g’ appears in the 
driving terms. On the left is the total rate of change of momentum flux. The 
first term on the right arises from the entrainment of fluid with velocity u at 
a rate Eu0, the second represents the component of gravity accelerating fluid 
down the slope, and the last expresses the pressure force on the layer due to 
its changing depth, the pressure gradient being assumed quasi-hydrostatic, equal 
to p’g cos 8 normal to the surface. There is no solid boundary, and hence no other 
drag term. S, and S, are profile constants, which are required to allow for arbitrary 
density profiles. They are assumed to be independent of s and are defined as in 
Ellison & Turner (1959) by 

(7) 

and 

numerical estimates of them for air-water mixtures are given in 0 3. 

give, for constant slope, 
The term on the left of (6) and the first term on the right can be combined to 

a dzl d W 2 )  - ( ~u’u,,) + 6u’ - = S, g6 sin 0 - QS, cos 8 - 
ds as as ’ (9) 

which is the form used in the subsequent analysis. This differs from the momentum 
equation used by Ellison & Turner through the addition of the term in du/ds, 
which was zero in the previous application, where the external flow was uniform. 



6 M .  X. Longuet-Higgins and J .  S.  Turner 

3. The processes of aeration 
A detailed study of the mechanisms whereby air can be trapped and retained 

in a whitecap lies outside the scope of the present work. I n  order to proceed with 
the entraining plume model, however, we need to make some plausible assumption 
about the variation ofp' with 5 and 8. In this section we must therefore digress 
briefly to discuss some relevant laboratory data on air entrainment in turbulent 
flows of water. 

The first way in which air bubbles can be incorporated in the whitecap is by 
the over-running of a layer of air by the advancing front. This is similar to the 
trapping which occurs in the roller zone of hydraulic jumps, and which has been 
thoroughly studied experimentally (see the review by Rajaratnam 1967). 
According to Rajaratnam (1962), the concentration of air in the jump rises 
rapidly initially, then decreases gradually downstream. The air is fairly uniformly 
distributed vertically, and the maximum concentration depends systematically 
on the Froude number; it reaches values as high as 20 yo over the range of con- 
ditions he studied. This suggests that the mean density p' in a vertical section 
can fall as low as 0.8 g/cm3 near a vigorously turbulent front. 

Another mechanism for the entrainment of air is the 'self-aeration' which 
can occur along the whole upper surface of a thin, vigorously turbulent flow 
(see, for example, Straub & Lamb 1956; Straub & Anderson 1958; Lakshmana 
Rao, Seetharamiah & Gangadharaiah 1970). High velocity open-channel flows 
(on a spillway, for instance) can begin to trap air when the turbulent boundary 
layer on the bottom reaches the surface, and 'white water' develops. The 
equilibrium distributions of air have been measured, and show a continuous 
variation from water containing a few air bubbles a t  the bottom to all air and 
no water at the top. Essentially there are two zones, the lower containing air 
bubbles suspended in water, and the upper consisting of water drops in air. 
An example of such a profile (converted to densities) and the associated velocity 
profile is shown in figure 2. Also of interest to us here is the observation that the 
mean concentration is a function mainly of the slope, with a weaker dependence 
on the Froude number. I n  figure 3 we summarize results of Straub & Anderson 
(1958) which show the variation with slope of the mean density over the whole 
depth, and that over the lower zone alone (the latter, shown in curve (a ) ,  being 
perhaps the more relevant for the present application). The dashed line represents 
a theoretical result which will be discussed in 5 5. 

Both these sets of observations suggest, therefore, that  for whitecaps running 
down a given slope with (as will be shown) a constant Froude or Richardson 
number, it is appropriate to take the concentration of air, and hence the density, 
as constant. The air-water mixture is likely t o  be lighter on steep slopes (with 
p' as little as 0.7 near the crest of the wave where the slope is 30") than it is lower 
down, but the effect of this will be investigated in our model by considering 
a series of fixed slopes and density differences, rather than a varying profile. 
Plots like figure 2 also allow us to estimate the values of XI and S,  (from ( 7 )  
and (8)) to use in the calculations, and we suggest 8, = 0.80 and X, = 1-00 as 
representative values. The deviations of these constants from unity are measures 
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FIUURE 2. An example of the density and downslope velocity profiles measured through 
a self-aerated flow. (After Straub & Lamb 1956, figure 9.) 
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FIGURE 3. The mean density of self-aerated flows measured as a function of slope. (a)  shows 
the result of averaging over a lower region consisting of air bubbles suspended in turbulent 
water, and (b)  includes a more diffuse region of spray droplets above this. (After Straub & 
Anderson 1958, figure 6.) (c) represents our theoretical estimate of the minimum density 
differences required to  produce a self-sustaining whitecap a t  various slopes. 
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of non-uniformity of the density distribution, and clearly constant density is 
a pretty good assumption; it is even better for the profiles measured in air- 
entraining hydraulic jumps. 

There is another aspect of the self-aeration process which may have a bearing 
on whitecaps and should be mentioned now. As Gangadharaiah, Lakshmana Rao 
& Seetharamiah (1970) have pointed out, entrainment can occur only when t,he 
turbulence at the free surface has enough energy to overcome the surface-tension 
energy, and so allow eddies to project out of the surface and trap air bubbles. 
The criterion can be written, using an argument which will not be reproduced 
here, in the form 

I = (phF/u)(u*h/v)+ > I,, (10) 

where h is the depth, e the mean velocity, u* the friction velocity, u the surface 
tension and v the kinematic viscosity. Thus the ‘inception number’ I must 
exceed some critical value I ,  (of order 50 when the turbulent boundary layer 
has reached the surface) before air can be trapped at  the surface in this way. 
For a breaker, this means that the flow must be deep enough and fast enough, 
or in terms of the theory in Q 4 (which implies that I K s t ) ,  must have progressed 
far enough from the crest, before this mechanism can operate. In  the early stages 
of all breakers, over-running at the front will be the only way in which air is 
trapped, but it is possible that at  a later stage whitecaps on large waves can be 
self-sustaining while those on small waves cannot. 

4. Similarity solution for a spilling breaker 
The boundary conditions and extra relations needed to simplify (5) and (9) 

and solve for 6 and u‘ can now be written down. It will shortly be seen that the 
known velocity variation at the surface of the wave, together with the constant 
density difference suggested by the discussion in the previous section, leads to 
a simple similarity solution describing the progress of a spilling breaker. 

It has already been pointed out that the surface velocity near the sharp crest 
varies like u cc 84; and if the slope below the crest is assumed to be constant, the 
same functional form will hold everywhere as a consequence of Bernoulli’s equa- 
tion, It is implied that the whitecap running down this slope remains thin, and 
does not itself substantially change the slope as it mixes with water from the 
wave. Since the pressure at the base of the turbulent layer is gp‘bcos0, the 
Bernoulli relation applied along this surface gives 

$pu2 = gpssinf3--gp’6cos0, (11)  

making the same quasi-hydrostatic assumption for the pressure as before. When 
the last term, which allows for the effect of the whitecap on the surface pressure, 
is neglected, then 

u= = 2gssine, (114 

and we obtain an explicit value for the constant of proportionality in the velocity 
relation. 
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It will be assumed that p' is constant, independent of s (though it can still be 
a function of 6). This suggests that g' = g(Ap/p) should be taken as the second 
parameter (in addition to s) which is required to define the flow. It turns out to 
be more convenient to use s and g (not 9') as scaling parameters, and to in- 
corporate Ap/p elsewhere in the analysis, but the assumption underlying this 
reduction should be kept in mind. Thus let us write 

6 = sk, u = gL&U, U' = g h d U ' ,  (12) 

where E, U and U' are dimensionless functions. (It is worth noting that these 
imply an 'eddy viscosity' proportional to 6u cc gk&. Also if all velocities are 
proportional to one another, then the 'inception number' I defined by (10) 
behaves like 82.)  

Substituting (12) in (5) gives 

d(gkdkU')/ds = Egb9( U' - U )  

or 

From the definition (1) we obtain 
S(APlP) ks cos 8 

( U' - upgs  
Rio = 

or 
Ri -?(&) E cos 8 

O-3 p p'(u ' -u) l*  
Thus for particular values of U' and U (which specify the magnitudes of the 
velocities in the whitecap and in the fluid immediately below it), the turbulent 
layer thickens linearly with s, and the Richardson number remains constant. 
We are therefore dealing with a kind of 'normal' flow, whose gross properties 
can be described in the same terms a t  all s, in spite of the fact that the flow is 
accelerating uniformly down the slope. Note that the linear spread implies (from 
(1 1)) that the same form of velocity variation a t  the surface of the wave will 
hold even when the pressure effect of the whitecap is taken into account. 

The momentum equation (9) becomes, using (12) and (13) and simplifying, 

d d 
-[U'(U'-  U)gEs2] +kgsgU'-(stU) = ~,glessin6-S1gk2scos6 
ds as 

or U'a( U' - U )  + &U'W = (is, sin 6) U' - $Y,( U' - U )  E cos 6. (15) 

Equations (14) and ( l q ,  together with the empirical entrainment function 
E(Bio), give three relations from which U', Bi, and E can be determined as 
functions of U .  It is convenient to have an analytic expression for E, and the 
laboratory results of Ellison & Turner (1959) can in fact be represented to good 
accuracy by the form 

" I  

0.08 - O*lRio 
E =  

1 + 5Ri0 . 
Calculations have been made for three slopes, lo", 20' and 30°, and for three 

density differences at  each slope. The values of the profile functions 8, and S, 
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FIGURE 4. Non-dimensional whitecap velocity U' plotted against the upslope velocity u 
in the laminar flow below. (a) Slope of 30'. (b)  Slope of 20'. (c) Slope of 10'. Plots for three 
density differences are given in each case; values of Ri, are marked on the curves. The 
vertical dashed line is drawn at the value of U obtained using the Bernoulli relation, and 
the inclined dashed lines show the modification due t o  the pressure effect of the whitecap. 
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FIGURE 5. The ratio U'/l U ( ,  as a function of U ,  for three slopes and several density 
differences, calculated from figure 4. 

have been fixed at  S, = 0.80 and S,  = 1.00 throughout, as suggested in $3 .  
The solutions of interest are those for positive U' (appropriate for a whitecap 
going down the slope) as a function of U (negative, since the basic flow on the 
front surface of the wave is always upwards in co-ordinates moving with the 
crest). They have been found parametrically by fixing Ri,, calculating E from 
(16) and then solving (14) and (15) for U and U'. The rate of spread can be found 
from (13), and used to evaluate the correction term in (11). 

5. Results and discussion 
The results of these calculations for a slope of 30" and Ap/p = (0.1,0.2,0-3) 

are shown in figure 4 (a),  where U' is plotted logarithmically against U on a linear 
scale, and values of Ri, are marked on the curves. The results for 20" and 
Ap/p = (0-1,0.2,0-3) are given in figure 4 ( b ) ,  and for loo and Ap/p = (0-05,0-10, 
0.15) in figure 4(c) (note the changed scale of U in the latter figure). The corre- 
sponding values of U'/U for all nine calculations are plotted as functions of U in 
figure 5. The major features of interest occur in the range of parameters plotted. 

The most important property of these curves is the maximum in IUI as U' 
varies. This form implies that no solution for a downslope entraining flow, moving 
against the upslope velocity at  the wave surface, is possible if I UI is too large. 
But we already have an estimate of U (the non-dimensional velocity at the 
surface of the wave) in (1 1) or ( 1  1 a )  ; in the absence of a whitecap, which is the 
appropriate condition for the initiation process, this is just (2 sin O)*. The corre- 
sponding values, I UI = 1-00 at 30°, 0-83 at 20" and 0.59 at 10') are shown as the 
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vertical lines on figures 4 and 5.  The contrasts between these plots demonstrate 
clearly the effect of changes of slope and density difference, and sum up the 
main results of this paper, At a slope of 30" (near the crest of the wave) real 
solutions to the balance equations exist when Aplp is in the range suggested by 
experiment, and so a breaker can develop from a small disturbance and accelerate 
down the slope. The minimum density difference required at a slope of 30" is 
8 %, well below the experimental values discussed in Q 3. 

The minimum density differences for other slopes are plotted as the dashed 
line on figure 3, for comparison with the experimental observations. A t  a slope 
of 349', the development of a whitecap becomes possible, according to our theory, 
with zero density difference between the whitecap and the water below. AS the 
slope decreases, larger and larger density differences are required to produce 
a self-sustaining flow, whereas the experimental curves on figure 3 show that the 
density difference will in fact be smaller at small slopes. Below a certain slope 
(between 18' and 24', depending on the values we adopt for Aplp) the upslope 
drag will dominate, and the whitecap can no longer propagate. This is consistent 
with the observation that an unsteady whitecap gets only part of the way down 
the face of the wave. 

When the critical condition is passed, there are in general two solutions for 
the downslope velocity U' for the relevant value of I 77 I. The lower branch of the 
curves corresponds to larger Ri,, low entrainment rates and much smaller down- 
slope velocities. It can also be argued that this represents an unstable state, 
since the motion is dominated by gravity; a disturbance which increases the 
velocity difference between the laminar flow and the whitecap will lead to an 
increase in the mixing rate, larger velocities of the breaker, and a rapid transition 
to the upper branch. On the upper branch, however, extra mixing produces 
a substantial increase in the drag, which opposes the velocity fluctuation and 
restores the equilibrium. (A similar effect was noted by Ellison & Turner in their 
solution for flow reversal in a pipe.) At a slope of 30' the intersections of the 
physically relevant upper branches with I Ul = 1 show that the whitecaps will 
have a downslope velocity which is much smaller than the upward velocity at 
the surface of the wave below. The ratio U'llUl ranges between 0.12 a t  
Aplp = 0.08, the lower limit for the initiation of the flow, and 0.17 at Aplp = 0.30. 

The variation of the angle of spread k (equation (13)) is also of interest, and 
this is plotted in figures 6 (a )  and ( b )  for slopes of 30" and 10" as a function of U 
(both on linear scales). The corresponding values of Ri, are again marked on the 
curves. When Ri, is large k has its largest values in the range considered, which 
for 0 = 30' at least are probably unrealistically high; but we should remember 
that these upper (dashed) parts of the curves correspond to the lower, unstable 
branches of figures 4 (a )  and (c). As Xi, is decreased, so is k, and the values along 
the more relevant full parts of the curves seem physically much more reasonable. 

With these estimates of k available, we can now calculate the effect of the 
whitecap on the velocity at  the wave surface using (1 1). In  the above discussion 
of the marginal state, it was appropriate to use (1 1 a), since a whitecap cannot 
affect the wave before it has formed. Once this has happened, however, the 
opposing upslope velocity is reduced owing to the pressure effect of the whitecap, 
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FIGURE 6. The angle of spread of whitecaps, calculated as functions of the dimensionless 
upslope velocity U = w/(gs)* for two slopes and various density differences. Values of 
Ri, are again marked on the curves. (a) S1o"pe 30': (i), (ii), (iii) correspond to Ap/p = (0.1, 
0.2, 0.3). (b)  Slope 10": (i), (ii), (iii) Ap/p = (0.05, 0.10, 0.15). 

which will be able to propagate more easily than it could initially. The values of 
the non-dimensional surface velocity I U I ,  corrected in this way, are plotted 
on figures 4 (a), (b )  and (c)  at the values of U' derived in the earlier calculations. 
The crossing points (marked by bold dots) of these and the original curves thus 
represent possible solutions for a downslope flow, including its effect on the velocity 
ofthe opposing$ow which it is entraining. On a slope of 30" (figure 4a) the effect 
is to increase the downslope velocity to 0.21 times the undisturbed surface 
velocity (this ratio depends very little on Ap/p). For 10" (figure 4c) the effect 
is more dramatic, since solutions now become possible where none existed 
before (with a downslope velocity 0.16 times that at  the surface of the undisturbed 
wave). A possible implication is that a finite disturbance, due perhaps to a breaker 
spilling down from the higher slope above, may allow the flow to go further than 
would be expected from the argument based on the marginal stability of an 
undisturbed flow. 

6. The motion of the front 
We must now return to the question raised in the introduction: to what extent 

can a theory formulated for steady motion (i.e. assuming u and u' are independent 
of time at  a fixed s) be used consistently to describe a flow which is certainly 
increasing in length as time goes on? We believe that this procedure can be 
justified, using an extension of the 'starting plume ' model proposed by Turner 
(1962) for the axisymmetric plume and applied by Tsang (1970), among others, 
to the two-dimensional case. 

This kind of model implies that the whole flow, the advancing front as well 
as the layer behind, will remain similar as it develops in time. First, it must be 
geometrically similar, so that the front also spreads linearly with distance (but 
perhaps at a different rate from the plume behind). Second, the power-law 
dependence of velocity on distance must be the same, with the front advancing 
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FIGURE 7. Sketch of the ‘starting plume’ interpretation of an advancing whitecap. 

a t  some fraction of the layer velocity a t  the same position. The flow in the layer 
behind the front is just the same as that in a completely steady plume extending 
t o  infinity in the s direction (which has been implied in all the previous discussion). 
I n  a ‘starting plume’, however, this flow feeds momentum and buoyancy to 
the front at just the rate required to maintain similarity; but because of the 
accumulation of fluid a t  the front, the velocity of advance is reduced. 

For both axisymmetric and two-dimensional starting plumes in neutral sur- 
roundings (i.e. with a constant buoyancy flux) the above picture has been shown 
to be consistent with the detailed equations of motion of the front. That is, if 
the region is regarded as a turbulent ‘thermal’, which is mixing with its sur- 
roundings and whose properties are also being changed by the injection of 
buoyant fluid from behind, then the deduced behaviour of the velocity and 
radius does indeed match that in the plume. What we must show now is that the 
same matching can be carried out for a two-dimensional plume whose properties 
are changing according to the similarity solution of 8 4. 

The model to be discussed is sketched in figure 7. The steady, established part 
of the whitecap is entraining water from below and air from above, a t  such a rate 
that the density of the air-water mixture remains constant. This also implies, 
according to the similarity solution, that the mass and buoyancy fluxes are 
increasing down the slope, with S cc s and u‘ cc g k d .  Thus the whitecap is 
accelerating uniformly down the slope, and the position of a fluid particle as 
a function of time t is given by s cc t2 .  At the front the layer will feed fluid into 
a circulating region which is like one half of a vortex pair (cf. the two-dimensional 
starting plume). Extra entrainment of both air and water will certainly occur 
here, and the penetration of the surface of the wave below may well be greater 
than it is in the steady part of the flow. 

The evidence from experiments on hydraulic jumps (4 3) has suggested that 
the net effect will be t o  keep the density of the mixture near the front constant 
(at a given Froude number); in fact this result applies more particularly to the 
front, rather than to the flow behind. If we now assume that g’ (or g) is the major 



An ‘ entraining plume’ model of a spilling breaker 15 

parameter determining the motion of the front, and seek a similarity solution, 
then again we find uf cc gBs4. Thus the front and the layer behind it have the 
same velocity behaviour, essentially because constant acceleration is the only 
behaviour which is consistent with the use of g (or 9’) as a scaling parameter. 

It may also be useful to sketch how this dimensional argument can be related 
to the dynamics of the front, regarded as a line vortex, though a description 
which is sufficiently detailed to include the different rates of spread and of 
advance must await more experimental information. Following Turner ( 1960) 
the impulse P per unit length of a vortex pair can be written in terms of the 
circulation K and the radius r as 

Pcc Kr. (17) 

In  the case of the similarity solution with constant acceleration this becomes 

P oc U’S2 oc t 5 ,  (17a)  

so tJhat the rate of change of momentum is 

a q d t  cc t4 .  (18) 

Contributing to this change of momentum is the downslope component of the 
total buoyancy per unit length of the front, which, assuming that Ap remains 
constant, is 

P cc r2 cc t4. 

A second contribution comes from the flux of momentum from the layer behind 

M a uI28 oc t4. (20) 

Since (18), (19) and (20) have the same t dependence, the momentum equation 
expressing the balance between these terms will give a consistent description of 
the motion of the front. 

The starting plume model, therefore, provides some justification for the kind 
of theoretical model we have used to describe a whitecap. If the similarity 
solution is a good approximation to the real, accelerating flow developing from 
a small disturbance at  wave crest, then we would expect the front also to advance 
initially with constant acceleration. The velocity of the front could, however, 
be less than that predicted in figure 4. 

7. Comparison with observation 
We have compared our theoretical model with measurements taken from the 

recent film by Kjeldsen & Olsen ( 1 9 7 1 )  of laboratory experiments on breaking 
waves. The measurements were made in a channel about I m wide and more than 
10 m in length, and with rigid plane beaches of uniform gradient. In the sequences 
on spilling breakers the waves had generally the appearance of solitary waves. 
We analysed two such sequences in detail, and the conclusions being similar in 
the two cases, only one will be presented here. 

We measured, frame-by-frame, the following parameters: 
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FIGURE 8. Measurements of the properties I ,  and 6’ of a whitecap (as defined in the text), 
taken from a spilling breaker sequence in the film by Kjeldsen & Olsen. Note the inter- 
mittent nature of the flow. 

X = the horizontal distance of the wave crest (identified by its maximum 

H = the height of the wave crest above the bottom. 
1 = the distance from the crest to the ‘toe ’ of the whitecap, measured along the 

0 = the inclination to the horizontal of the line joining the crest to the ‘toe’ 

From these we calculated the horizontal and vertical distances (6 and 7) of 

curvature) relative to a fixed mark in the wave tank. 

surface of the wave. 

of the whitecap. 
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FIGURE 9. The measured horizontal position of the crest X, and the horizontal distance 
between the toe of the whitecap and the smoothed position of the crest, plotted for the 
same film sequence as figure 8. The time intervals marked along the bottom are those used 
to obtain the average values given in the table. 

the toe relative to the wave crest. We also measured the maximum thickness 6 
of whitecap on each frame, and occasionally the angle of the wedge, approxi- 
mately 611. 

I n  figure 8 are plotted the quantities I, 8 and 7 = 1 sin 8, as functions of the 
frame number. It can be seen a t  once that, apart from a general increase in 1 
and 7 with time, there is also a marked intermittency. The observations showed 
that after initiation of the whitecap there was a preliminary period of growth, 
after which the wave crest would become more rounded. A part of the whitecap 
would then be dragged over the crest, which then became sharp again. The reasons 
for this behaviour are discussed in 3 8. Sometimes two wave ‘crests’ could be 
identified on a single frame and in this case the measurements of both are 
plotted. 

However, most of the intermittency in 1 shown in figure 8 is due to the oscilla- 
tion in the horizontal position of the crest, not the toe. This is shown in figure 9, 
where we have plotted the horizontal co-ordinate 5 of the toe relative to the 
smoothed position of the crest. It will be seen that, after an initial jump, 5 in- 
creases much more smoothly than ( (note the change in scale). A parabola, 
representing a uniform acceleration, can be drawn to fit the points reasonably 

2 F L M  63 
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well, apart from a brief excursion in the middle, associated with a transient 
increase in the rate of advance of the crest. 

The corresponding velocities can be estimated in the absence of any precise 
record of the film speed used by Kjeldsen & Olsen, and using only the fact that 
the mean phase velocity d X / d t  is given accurately for a solitary wave by Scott 
Russell's formula (gH)4. According to our model u may be taken as (297)* very 
nearly, where 7 is the measured vertical distance from the crest. The smoothed 
downslope velocity di/dt = secB(dZ/dt) can be found from the parabola fitted 
to the points in figure 9, and compared with d X / d t  from that same plot. Denoting 
the ratio (dE /d t ) / (dX /d t )  by R say, we obtain finally 

(d i /d t ) /u  = Rsec O(H/27)*. (21) 

The results of this calculation a t  three times during the run are shown in the 
table. H ,  7 and 8 were evaluated locally, using averages of 10-15 values centred 
on the time of interest. This procedure is not quite consistent with the fitting of 
a line of constant slope over the whole range of X ,  but it is sufficiently accurate 
for the present purpose. In  the early stages, immediately after the initiation of 
the whitecap, its behaviour is well described by the theory; it is accelerating 
down the slope, and moving with 16% of the upslope velocity in the wave 
underneath it. A t  later times, however, its velocity is an increasing fraction of u. 
This could be a consequence of two effects. First, there is the influence of the 
whitecap on the velocity of the upslope flow beneath it (which has been described 
in the earlier theoretical sections). Second, the change in slope with time leads 
to a decrease in the deduced value of 7, an effect which is not included in the 
simple theory, but which is discussed further below. 

t 
(frames 
from 

initiation H 7 
Interval of spill) R 0 (om) (em) ( w w / u  

1 13 0.078 35" 29.7 5.3 0.16 
2 31 0.187 21.5" 27.8 5.8 0.31 
3 54 0.326 17.5" 24.6 8.2 0.42 

TABLE 1. Summarizing the mean properties of a spilling breaker as measured from the 
film at three times after the initiation of s whitecap. 

8. The energy balance of the waves 
We shall now give an interpretation of the intermittency seen in figures 8 and 9. 
A rough estimate of the energy lost through breaking may be made as follows. 

If we consider the whitecap as a mass of lighter fluid resting inertly on the forward 
face of the wave, the weight W of the whitecap must do work against the wave 
a t  a rate Wv cos 8, where v is the normal velocity a t  the interface and 8 is the 
angle between the normal and the vertical. Since v = c sin 8, the rate of working 
is c Wcos 8 sin 8 and the total work done during one wave period is W L  cos 8 sin 8, 
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where L is the wavelength. This must be equal to thedifference in the integrated 
flux of energy across the two ends of a horizontal interval of length L, (We ignore 
the loss of kinetic energy through entrainment into the wedge, which can be 
shown to be relatively small.) Now the integrated energy flux is simply the total 
energy of the wave, which for a solitary wave of maximum amplitude in water of 
uniform depth is equal to ypgh3, where h is the undisturbed depth and y is 
a factor equal to about 1.0 (see Longuet-Higgins 1974) .  However, in shoaling 
water y may be of order 5 or more (see Ippen & Kulin 1955). We have then 

W L  cos 6 sin 6 = - Ld( ypgh3) /dX .  

w = 1  z p g  ‘ 12 sha, 

( 2 2 )  

(23) But also 

where l is the length of the whitecap and a the angle of the ‘wedge’. From these 
two equations we obtain 

Substituting the typical values 

pip‘ = 1.2, laqax1 = 0-03, a = 200, 0 = 30°, = 3-0, 

we find Z/h = 1.7. The total depth H (on beaches of this slope) being about 2-6h, 
we have 

IIH + 0.65. (25) 

We conclude that for a solitary wave to lose energy gradually to a spilling 
breaker, the length 1 of the whitecap should be a certain fraction, about half, 
of the total height of the wave. 

However, we have already shown that there is a tendency for the length of 
the whitecap to increase and for the whitecap to spread down the forward face 
of the wave, whereas on a shelving beach H tends constantly to diminish. It 
follows that a steady state cannot normally be achieved. The whitecap can 
therefore exist only intermittently. 

From the observations it appears that what actually occurs in a spilling breaker 
is that, as the whitecap grows, the rate of damping described above overtakes the 
effect of wave steepening due to shoaling. The wave crest then becomes rounded. 
This reduces the slope, and enables part of the whitecap to be dragged over the 
crest. The wave can then steepen again, and the whitecap resumes its growth. 
The process is repeated, until the wave energy is no longer sufficient to maintain it. 

9. Conclusion 
We have shown how several features of a spilling breaker can be described 

using a model which regards the whitecap as a turbulent plume, running down 
the forward slope of the wave and entraining the laminar fluid below it. In  
particular, the predicted sensitive dependence on the slope, and the magnitude 
of the downslope velocity, are in agreement with laboratory observations of 
spilling breakers. 

Our explicit similarity solutions, however, are based on the assumption of 
2-2 
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constant density of the air-water mixture in the whitecap. While this has some 
support from the limited observations of air-entraining flows of other kinds, 
it is the weakest point of our present model, and further work on this aspect of 
the problem would be desirable. It seems probable that the spreading of a white- 
cap down the forward face of a wave is sometimes limited not by the surface slope, 
but by the decrease of the density difference due to the loss of air bubbles as they 
rise through the whitecap. A fully time- and space-dependent description of the 
concentration of air in a whitecap should be our eventual aim. Nevertheless, 
the balance of forces we have used in this paper will still be relevant in any 
theory which takes the turbulence in whitecaps properly into account. 

One of us (J.S.T.) acknowledges the support of a grant from the British 
Admiralty . 
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